# Soil Organic Carbon Sequestration in the Southeastern USA:

**Potential and Limitations** 

Alan J. Franzluebbers

**Ecologist** 





Depth distribution of soil organic C



From Schnabel et al. (2001) Ch. 12, Pot. U.S. Grazing Lands Sequester C, Lewis Publ.

Calculation by relative difference



Calculation by change with time



Temporal and comparative approaches of value; in combination best!

Calculation by change with time



Franzluebbers et al. (2001) Soil Sci. Soc. Am. J. 65:834-841 and unpublished data

In the USA and Canada, conservation-tillage cropping can sequester an average of 0.33 Mg C/ha/yr



Literature review from the southeastern USA



Literature review from the southeastern USA



Impact of cover cropping in the southeastern USA



Photos of 2 no-tillage systems in Virginia USA



Soil Organic Carbon Sequestration in the Southeastern USA

0.28 ± 0.44 Mg C/ha/yr (without cover cropping)

0.53 ± 0.45 Mg C/ha/yr (with cover cropping)

Stratification ratio of soil organic C



- Soil depth (cm) Concentration of soil

  property at 0-5-cm depth
  divided by concentration at

  12.5-20-cm depth.
  - Soil property near the bottom of the 'plow layer' should reflect an inherent characteristic to normalize each soil.

Stratification ratio of soil organic C



Influence of tillage system following pasture



Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Influence of tillage system following pasture



Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Influence of animal manure application dependent on climate

Percentage of carbon applied as manure retained in soil (review of literature in 2001)

Temperate or frigid regions (23 ± 15%)

Thermic regions  $(7 \pm 5\%)$ 

Moist regions  $(8 \pm 4\%)$ 

**Dry regions (11 + 14%)** 

#### Integration of crops and livestock

- ✓ Opportunities exist to capture more carbon from crop and grazing systems when the two systems are integrated:
  - Utilization of lignocellulosic plant materials by ruminants
  - Manure deposition directly on land
  - Weeds can be managed with management rather than chemicals





Grazing of cover crops under no tillage (0-6 cm)



Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Nitrogen fertilization effect



1 kg N<sub>2</sub>O-N ha<sup>-1</sup> = 0.13 Mg C ha<sup>-1</sup>



#### Nitrous Oxide Emission

Interaction of tillage with soil type



45 site-years of data reviewed Brazil, Canada, France, Japan, New Zealand, United Kingdom, USA

Rochette (2008) Soil Till. Res. 101:97-100

#### Influence of crop residue removal

#### At end of 7 years

| Response                                      |           | Silage Crop Removal  |    |                      |
|-----------------------------------------------|-----------|----------------------|----|----------------------|
| 0-20-cm depth                                 | Initially | 0.5 yr <sup>-1</sup> |    | 1-2 yr <sup>-1</sup> |
|                                               |           |                      |    |                      |
| Bulk density (Mg m <sup>-3</sup> )            | 1.43      | 1.37                 | ns | 1.39                 |
|                                               |           |                      |    |                      |
| Macroaggregate stability (g g <sup>-1</sup> ) | 0.74      | 0.87                 | *  | 0.81                 |
|                                               |           |                      |    |                      |
| Soil organic C (mg g <sup>-1</sup> )          | 11.7      | 14.3                 | *  | 12.5                 |

### Off-Site Impacts

#### Water quality implications

#### Pennsylvania

| Land use | Soil (g/kg – 0 | )-5 cm depth) | Runoff loss (kg/ha) |             |         |  |
|----------|----------------|---------------|---------------------|-------------|---------|--|
|          | Organic C      | Mehlich-3 P   | Sediment            | Dissolved P | Total P |  |
| CT crop  | 13.7           | 0.32          | 767                 | 0.02        | 0.52    |  |
| NT crop  | 25.2           | 0.33          | 312                 | 0.03        | 0.27    |  |
| Grass    | 16.6           | 0.40          | 104                 | 0.03        | 0.19    |  |

#### Oklahoma

| Land use | Water             | Runoff loss (kg/ha/yr) |           |         |             |         |  |
|----------|-------------------|------------------------|-----------|---------|-------------|---------|--|
|          | runoff<br>(mm/yr) | Sediment               | Nitrate N | Total N | Dissolved P | Total P |  |
| CT wheat | 61                | 6515                   | 1.3       | 15.0    | 0.2         | 2.8     |  |
| NT wheat | 111               | 625                    | 1.4       | 7.2     | 0.7         | 1.4     |  |
| Grass    | 48                | 100                    | 0.1       | 1.2     | 0.1         | 0.1     |  |

#### Methane Emission



Agriculture's contribution to greenhouse gas emissions reviewed: Johnson et al. (2007) Environ. Poll. 150:107-124

#### Summary

**Soil organic carbon** can be sequestered with adoption of conservation agricultural practices

- ✓ Enhanced soil fertility and soil quality
- ✓ Mitigation of greenhouse gas emissions
- ✓ Soil surface change is most notable
- ✓ Long-term changes are most scientifically defensible



Acknowledgements







#### **Funding**

Agricultural Research Service (ARS)

US-Department of Energy Madison County Cattleman's Association

USDA-National Research Initiative – Soil Processes

Cotton Incorporated
Georgia Commodity
Commission for Corn
The Organic Center
ARS GRACEnet team







